7.6 Ordinal logistic regression in domain analysis
In Chapter 6.5, we preform ordinal regression on the variable \(\texttt{ENV_AFRDWLK_MCQ}\). Suppose we are interested in \(\texttt{ENV_AFRDWLK_MCQ}\) for the group of people who answer the questionnaire in English only, we can use the following codes:
R
SAS
PROC SURVEYLOGISTIC data = CLSAData;
CLASS ENV_AFRDWLK_MCQ WGHTS_PROV_TRM(ref = 'AB') Age_group_5(ref = '45-48')
SEX_ASK_TRM(ref = 'F') Education(ref = 'Low Education')/param = ref;
MODEL ENV_AFRDWLK_MCQ = SEX_ASK_TRM Age_group_5 Education WGHTS_PROV_TRM /clodds ;
DOMAIN startlanguage;
STRATA GEOSTRAT_TRM;
WEIGHT WGHTS_ANALYTIC_TRM;
ODS output ParameterEstimates = est
run;
PROC PRINT data = EST;
WHERE startlanguage = 'en';
RUN;
SPSS
Analyze \(\rightarrow\) Complex Samples \(\rightarrow\) Ordinal Regression… \(\rightarrow\) in the “Plan” panel, select the file “\(\texttt{CLSADesignAnyl.csaplan}\)” \(\rightarrow\) click “Continue” \(\rightarrow\) select the corresponding variables to the “Dependent Variable”, “Factor” and “Covariate” panels \(\rightarrow\) click “Response Probabilities” and select “Accumulate from lowest value of dependent variable to highest value” \(\rightarrow\) select “\(\texttt{startlanguage}\)” to the “Subpopulations” panel and enter the target category \(\rightarrow\) click “Statistics…” \(\rightarrow\) select “Estimate” and “Standard error” \(\rightarrow\) click “Continue” \(\rightarrow\) click “OK”.
Stata
Population Estimates | Coeff. | SE | Coeff. | SE | Coeff. | SE | Coeff. | SE |
---|---|---|---|---|---|---|---|---|
SEX_ASK_TRM=“M” | -0.2953 | 0.2621 | -0.2953 | 0.2483 | -0.2953 | 0.2621 | -0.2953 | 0.2621 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||||
Age_Gpr1:Age 49-54 | -0.8864 | 0.4833 | -0.8864 | 0.5500 | -0.8864 | 0.4833 | -0.8864 | 0.4833 |
Age_Gpr2:Age 55-64 | -1.8779 | 0.4652 | -1.8779 | 0.5319 | -1.8779 | 0.4652 | -1.8779 | 0.4652 |
Age_Gpr3:Age 65-74 | -2.6458 | 0.5664 | -2.6458 | 0.5765 | -2.6458 | 0.5665 | -2.6458 | 0.5665 |
Age_Gpr4:Age 75+ | -1.8549 | 0.7224 | -1.8548 | 0.6224 | -1.8550 | 0.7224 | -1.8550 | 0.7224 |
Education Levels: relative to Lower Education | ||||||||
Medium Education | 0.0377 | 0.3189 | -0.4549 | 0.4262 | 0.0377 | 0.3189 | 0.0377 | 0.3189 |
Higher Education lower | -0.4549 | 0.4278 | -0.1094 | 0.3637 | -0.4549 | 0.4278 | -0.4549 | 0.4278 |
Higher Education upper | -0.1094 | 0.3601 | 0.0377 | 0.3313 | -0.1094 | 0.3601 | -0.1094 | 0.3601 |
Provinces: relative to Alberta | ||||||||
British Columbia | 0.4416 | 0.6038 | 0.4415 | 0.5546 | 0.4416 | 0.6038 | 0.4416 | 0.6038 |
Manitoba | -0.8341 | 0.5353 | -0.8341 | 0.5276 | -0.8341 | 0.5353 | -0.8341 | 0.5353 |
New Brunswick | 1.0277 | 0.6496 | 1.0276 | 0.6244 | 1.0277 | 0.6496 | 1.0277 | 0.6496 |
Newfoundland & Labrador | -0.4101 | 0.6474 | -0.4101 | 0.6380 | -0.4101 | 0.6474 | -0.4101 | 0.6474 |
Nova Scotia | 1.2935 | 0.6875 | 1.2935 | 0.6480 | 1.2935 | 0.6875 | 1.2935 | 0.6875 |
Ontario | 0.6564 | 0.5061 | 0.6564 | 0.4611 | 0.6564 | 0.5061 | 0.6564 | 0.5061 |
Prince Edward Island | -0.0906 | 0.7565 | -0.0906 | 0.7024 | -0.0906 | 0.7565 | -0.0906 | 0.7565 |
Quebec | 0.0069 | 0.4952 | 0.0069 | 0.4659 | 0.0069 | 0.4952 | 0.0069 | 0.4952 |
Saskatchewan | -0.6506 | 0.5255 | -0.6506 | 0.5242 | -0.6506 | 0.5255 | -0.6506 | 0.5255 |
(Intercepts) | ||||||||
Strongly Agree|Agree | -4.0770 | 0.6693 | -4.0770 | 0.6954 | -4.0770 | 0.6693 | -4.0770 | 0.6693 |
Agree|Disagree | -2.9143 | 0.6536 | -2.9144 | 0.6731 | -2.9143 | 0.6536 | -2.9143 | 0.6536 |
Disagree|Strongly Disagree | -1.2303 | 0.6951 | -1.2304 | 0.7207 | -1.2303 | 0.6951 | -1.2303 | 0.6951 |