7.4 Logistic regression in domain analysis
If we want to investigate the experiencing dry mouth indicated by the variable “” for the group of people who responses in English, we may apply the following codes.
R
LogisticReg3_EN<-svyglm(ORH_EXP_DRM_MCQ ~ SEX_ASK_TRM + Age_group_5 +
Education + WGHTS_PROV_TRM, family =quasibinomial,
design = subset(CLSA.design.anly, startlanguage == "en"))
summary(LogisticReg3_EN)
SAS
PROC SURVEYLOGISTIC data = CLSAData ;
CLASS ORH_EXP_DRM_MCQ SEX_ASK_TRM Age_group_5 Education
WGHTS_PROV_TRM /param = ref ;
MODEL ORH_EXP_DRM_MCQ(event = 'Yes') = SEX_ASK_TRM Age_group_5 Education
WGHTS_PROV_TRM /clodds ;
DOMAIN startlanguage;
STRATA GEOSTRAT_TRM ;
WEIGHT WGHTS_ANALYTIC_TRM;
ODS output ParameterEstimates = Est;
RUN;
PROC PRINT data = EST;
WHERE startlanguage ="en";
FORMAT _numeric_ 15.9; RUN;
SPSS
Analyze Complex Samples Logistic Regression… - Select the file “CLSADesignAnyl.csaplan” in the Plan panel select [Target Variables] to the “Dependent Variable”, “Factor” and “Covariate” panels Select to “Subpopulation” and enter the target category Click “Reference Category” and select “Lowest value” Click “Statistics…” select “Estimate” and “Standard error” Click “Continue” Click “OK”.
Stata
svyset entity_id, strata(StraVar) weight(WGHTS_ANALYTIC_TRM)
vce(linearized) singleunit(certainty)
svy linearized, bpop(if startlanguage == "en"):logit ORH_EXP_DRM_MCQ
i.SEX_ASK_TRM i.Age_group_5 ib3.Education i.WGHTS_PROV_TRM
Result comparison
Population Estimates | Coeff. | SE | Coeff. | SE | Coeff. | SE | Coeff. | SE |
---|---|---|---|---|---|---|---|---|
(Intercept) | -0.9380 | 0.7591 | -0.9380 | 0.7673 | -0.9380 | 0.7591 | -0.9380 | 0.7591 |
SEX_ASK_TRM=“M” | 0.0224 | 0.3212 | 0.0224 | 0.3246 | 0.0224 | 0.3212 | 0.0224 | 0.3212 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||||
Age_Gpr1:Age 49-54 | -0.1932 | 0.6036 | -0.1932 | 0.6101 | -0.1932 | 0.6036 | -0.1932 | 0.6036 |
Age_Gpr2:Age 55-64 | -0.0805 | 0.5351 | -0.0805 | 0.5409 | -0.0805 | 0.5351 | -0.0805 | 0.5351 |
Age_Gpr3:Age 65-74 | -0.3359 | 0.6068 | -0.3359 | 0.6133 | -0.3359 | 0.6068 | -0.3359 | 0.6068 |
Age_Gpr4:Age 75+ | -0.1661 | 0.5741 | -0.1661 | 0.5803 | -0.1661 | 0.5741 | -0.1661 | 0.5741 |
Education Levels: relative to Lower Education | ||||||||
Medium Education | -0.4169 | 0.4932 | -0.4169 | 0.4985 | -0.4169 | 0.4932 | -0.4169 | 0.4932 |
Higher Education lower | -0.3929 | 0.5497 | -0.3929 | 0.5556 | -0.3929 | 0.5497 | -0.3929 | 0.5497 |
Higher Education upper | -0.2881 | 0.4922 | -0.2881 | 0.4975 | -0.2881 | 0.4922 | -0.2881 | 0.4922 |
Provinces: relative to Alberta | ||||||||
British Columbia | -0.1843 | 0.5509 | -0.1843 | 0.5569 | -0.1843 | 0.5509 | -0.1843 | 0.5509 |
Manitoba | 0.8442 | 0.6592 | 0.8442 | 0.6664 | 0.8442 | 0.6592 | 0.8442 | 0.6592 |
New Brunswick | -0.6450 | 0.8076 | -0.6450 | 0.8163 | -0.6450 | 0.8076 | -0.6450 | 0.8076 |
Newfoundland & Labrador | -1.5032 | 0.8618 | -1.5032 | 0.8711 | -1.5032 | 0.8618 | -1.5032 | 0.8618 |
Nova Scotia | 1.1995 | 0.6817 | 1.1995 | 0.6890 | 1.1995 | 0.6817 | 1.1995 | 0.6817 |
Ontario | -0.2185 | 0.5167 | -0.2185 | 0.5222 | -0.2185 | 0.5167 | -0.2185 | 0.5167 |
Prince Edward Island | 0.2387 | 0.8349 | 0.2387 | 0.8440 | 0.2387 | 0.8349 | 0.2387 | 0.8349 |
Quebec | 0.0644 | 0.5627 | 0.0644 | 0.5688 | 0.0644 | 0.5627 | 0.0644 | 0.5627 |
Saskatchewan | 0.4553 | 0.6699 | 0.4553 | 0.6772 | 0.4553 | 0.6699 | 0.4553 | 0.6699 |