7.2 Estimation of domain quantiles
If we may want to estimate the population quantiles and medians of the self-reported weight and height among people with or without a university degree, we may consider the following codes.
R
# For people who did not attend an university
Quant.NUni<- svyquantile( ~ HWT_DHT_M_TRM+HWT_WGHT_KG_TRM,
quantile = c(0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975),alpha = 0.05,
design = subset(CLSA.design, ED_HIGH_TRM == "Non_university"),
interval.type = "Wald", ties = c("rounded"), ci = TRUE, se = TRUE)
Quant.NUni; SE(Quant.NUni);
# For people who attended an university
Quant.Uni<-svyquantile( ~ HWT_DHT_M_TRM+HWT_WGHT_KG_TRM,
quantil =c(0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975),alpha = 0.05,
design = subset(CLSA.design, ED_HIGH_TRM == "University"),
interval.type = "Wald",ties = c("rounded"), ci = TRUE, se = TRUE)
Quant.Uni; SE(Quant.Uni);
SAS
PROC SURVEYMEANS data = CLSAData
QUANTILE = (0.025 0.05 0.1 0.5 0.9 0.95 0.975) NONSYMCL;
VAR HWT_DHT_M_TRM HWT_WGHT_KG_TRM ;
DOMAIN ED_HIGH_TRM;
STRATA GEOSTRAT_TRM ;
WEIGHT WGHTS_INFLATION_TRM;
RUN;
SPSS and Stata In \(\texttt{SPSS}\) and \(\texttt{Stata}\) packages, there is no formal procedure available to produce quantile estimates for domain analysis.
Result comparison
Quantiles | R | SAS | R | SAS | R | SAS | R | SAS |
---|---|---|---|---|---|---|---|---|
Estimate | ||||||||
0.025 | 1.5367 | 1.5367 | 1.5291 | 1.5291 | 50.8669 | 50.8669 | 45.1422 | 45.1422 |
0.05 | 1.5452 | 1.5452 | 1.5691 | 1.5691 | 54.1563 | 54.1563 | 48.1974 | 48.1974 |
0.1 | 1.5769 | 1.5769 | 1.5958 | 1.5958 | 57.7347 | 57.7347 | 56.6144 | 56.6144 |
0.5 | 1.6729 | 1.6729 | 1.6915 | 1.6915 | 76.5711 | 76.5711 | 77.7776 | 77.7776 |
0.9 | 1.7564 | 1.7564 | 1.7677 | 1.7677 | 95.8922 | 95.8922 | 100.7855 | 100.7855 |
0.95 | 1.7846 | 1.7846 | 1.8053 | 1.8053 | 103.0741 | 103.0741 | 110.0363 | 110.0363 |
0.975 | 1.8024 | 1.8024 | 1.8391 | 1.8391 | 109.5934 | 109.5934 | 117.7170 | 117.7170 |
SE | ||||||||
0.025 | 0.0065 | 0.0138 | 0.0252 | 0.0424 | 1.2007 | 1.5157 | 7.8304 | NA |
0.05 | 0.0056 | 0.0078 | 0.0148 | 0.0144 | 1.1715 | 1.1681 | 3.2904 | 8.0046 |
0.1 | 0.0134 | 0.0134 | 0.0108 | 0.0112 | 1.7917 | 1.7500 | 4.0130 | 4.2362 |
0.5 | 0.0083 | 0.0084 | 0.0103 | 0.0103 | 1.1980 | 1.1927 | 1.1935 | 1.2661 |
0.9 | 0.0084 | 0.0083 | 0.0084 | 0.0082 | 1.7410 | 1.5701 | 4.4117 | 3.6180 |
0.95 | 0.0080 | 0.0081 | 0.0164 | 0.0153 | 3.0127 | 3.0355 | 4.2546 | 4.2032 |
0.975 | 0.0189 | 0.0144 | 0.0183 | 0.0167 | 7.3211 | 7.2938 | 5.5476 | NA |
Note:
SAS does not provide some standard errors since the quantiles are too extreme.