7.5 Multinomial logistic regression in domain analysis
In Chapter 6.4, we created the variable, \(\texttt{WEA_MRTL_CURRENT_NEW}\) representing the current marital status (“Single,” “Married,” and “Others”). Suppose we are interested in the current marital status of the subpopulation which uses English to answer the questionnaire.
R There is no official support for multinomial regression directly from the \(\texttt{survey}\) package in \(\texttt{R}\).
SAS
PROC SURVEYLOGISTIC data = CLSAData ;
CLASS WEA_MRTL_CURRENT_NEW(ref = 'Single') WGHTS_PROV_TRM(ref = 'AB')
Age_group_5(ref = '45-48') SEX_ASK_TRM(ref = 'F')
Education(ref = 'Low Education')/param = ref;
MODEL WEA_MRTL_CURRENT_NEW = SEX_ASK_TRM Age_group_5 Education
WGHTS_PROV_TRM /link = glogit;
DOMAIN startlanguage;
STRATA GEOSTRAT_TRM;
WEIGHT WGHTS_ANALYTIC_TRM;
ODS output ParameterEstimates = EST;
RUN;
PROC SORT data = EST Out = MyParmEst ;
BY Response;
WHERE startlanguage = "en";
RUN;
PROC PRINT data = MyParmEst; RUN;
SPSS
Analyze \(\rightarrow\) Complex Samples \(\rightarrow\) Logistc Regression…
\(\rightarrow\) in the “Plan” panel, select the file “\(\texttt{CLSADesignAnyl.csaplan}\)”
\(\rightarrow\) click “Continue”
\(\rightarrow\) select the corresponding variables to the “Dependent Variable”, “Factor” and “Covariate” panels
\(\rightarrow\) click “Reference Category” and select “Lowest value”
\(\rightarrow\) select “\(\texttt{startlanguage}\)” to the “Subpopulations” panel and enter the target category
\(\rightarrow\) click “Statistics…” \(\rightarrow\) select “Estimate” and “Standard error” \(\rightarrow\) click “Continue” \(\rightarrow\) click “OK”.
Stata
Population Est. | Est. | SE | Est. | SE | Est. | SE |
---|---|---|---|---|---|---|
2:Married | ||||||
(Intercept) | 1.9466 | 1.1853 | 1.9466 | 1.1591 | 1.9466 | 1.1591 |
SEX_ASK_TRM=“M” | 0.3502 | 0.4382 | 0.3502 | 0.4285 | 0.3502 | 0.4284 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||
Age_Gpr1:Age 49-54 | -0.8421 | 0.9684 | -0.8421 | 0.9470 | -0.8421 | 0.9469 |
Age_Gpr2:Age 55-64 | -0.4370 | 0.9026 | -0.4370 | 0.8826 | -0.4370 | 0.8826 |
Age_Gpr3:Age 65-74 | -1.3042 | 0.9379 | -1.3042 | 0.9172 | -1.3042 | 0.9171 |
Age_Gpr4:Age 75+ | -0.0157 | 1.0214 | -0.0157 | 0.9987 | -0.0157 | 0.9987 |
Education Levels: relative to Lower Education | ||||||
Medium Education | 0.3665 | 0.6343 | 0.3665 | 0.6202 | 0.3665 | 0.6202 |
Higher Education lower | 0.0851 | 0.6725 | 0.0851 | 0.6576 | 0.0851 | 0.6576 |
Higher Education upper | 0.5684 | 0.6446 | 0.5684 | 0.6303 | 0.5684 | 0.6303 |
Provinces: relative to Alberta | ||||||
British Columbia | -0.4055 | 0.8759 | -0.4055 | 0.8565 | -0.4055 | 0.8565 |
Manitoba | -0.6105 | 0.9204 | -0.6105 | 0.9000 | -0.6106 | 0.9000 |
New Brunswick | -0.4589 | 1.0576 | -0.4589 | 1.0342 | -0.4592 | 1.0341 |
Newfoundland & Labrador | 0.6142 | 1.0791 | 0.6142 | 1.0552 | 0.6142 | 1.0552 |
Nova Scotia | 0.0791 | 1.0709 | 0.0791 | 1.0472 | 0.0790 | 1.0472 |
Ontario | 0.2354 | 0.8047 | 0.2354 | 0.7869 | 0.2354 | 0.7869 |
Prince Edward Island | 12.8690 | 0.8114 | 19.8690 | 0.0000 | 13.8779 | 0.7935 |
Quebec | -0.5356 | 0.8771 | -0.5356 | 0.8577 | -0.5357 | 0.8577 |
Saskatchewan | 1.5866 | 1.1386 | 1.5866 | 1.1134 | 1.5879 | 1.1140 |
3:Other | ||||||
(Intercept) | 1.6253 | 1.6272 | 1.6253 | 1.5912 | 1.6255 | 1.5911 |
SEX_ASK_TRM=“M” | -0.6157 | 0.5394 | -0.6157 | 0.5275 | -0.6157 | 0.5274 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||
Age_Gpr1:Age 49-54 | -1.4500 | 1.3597 | -1.4500 | 1.3296 | -1.4501 | 1.3295 |
Age_Gpr2:Age 55-64 | -0.6046 | 1.2955 | -0.6046 | 1.2668 | -0.6046 | 1.2667 |
Age_Gpr3:Age 65-74 | -0.3936 | 1.2713 | -0.3936 | 1.2432 | -0.3935 | 1.2431 |
Age_Gpr4:Age 75+ | -0.3864 | 1.3586 | -0.3864 | 1.3285 | -0.3864 | 1.3284 |
Education Levels: relative to Lower Education | ||||||
Medium Education | 0.7692 | 0.8135 | 0.7692 | 0.7955 | 0.7692 | 0.7955 |
Higher Education lower | 0.4620 | 0.8535 | 0.4620 | 0.8346 | 0.4620 | 0.8346 |
Higher Education upper | 0.2891 | 0.8346 | 0.2891 | 0.8161 | 0.2891 | 0.8161 |
Provinces: relative to Alberta | ||||||
British Columbia | -0.8886 | 0.9615 | -0.8886 | 0.9402 | -0.8887 | 0.9402 |
Manitoba | -2.3652 | 1.1535 | -2.3652 | 1.1280 | -2.3657 | 1.1280 |
New Brunswick | -2.7147 | 1.3314 | -2.7147 | 1.3020 | -2.7162 | 1.3024 |
Newfoundland & Labrador | -0.5965 | 1.2711 | -0.5965 | 1.2429 | -0.5967 | 1.2428 |
Nova Scotia | -1.3207 | 1.2335 | -1.3207 | 1.2062 | -1.3208 | 1.2061 |
Ontario | -0.6761 | 0.8822 | -0.6761 | 0.8627 | -0.6762 | 0.8627 |
Prince Edward Island | 12.9517 | 0.8655 | 19.9517 | 6.9021 | 13.9607 | 0.8462 |
Quebec | -1.2976 | 0.9965 | -1.2976 | 0.9744 | -1.2978 | 0.9744 |
Saskatchewan | 1.2386 | 1.1998 | 1.2386 | 1.1733 | 1.2398 | 1.1738 |
Note:
Both \(\texttt{SAS}\) and \(\texttt{SPSS}\) detect that there is a quasi-complete separation in the dataset while \(\texttt{Stata}\) does not.This results in the slight differences in the estimates and the standard errors.