7.5 Multinomial logistic regression in domain analysis
In Chapter 6.4, we created the variable, representing the current marital status (“Single,” “Married,” and “Others”). Suppose we are interested in the current marital status of the subpopulation which uses English to answer the questionnaire.
R There is no official support for multinomial regression directly from the package in .
SAS
PROC SURVEYLOGISTIC data = CLSAData ;
CLASS WEA_MRTL_CURRENT_NEW(ref = 'Single') WGHTS_PROV_TRM(ref = 'AB')
Age_group_5(ref = '45-48') SEX_ASK_TRM(ref = 'F')
Education(ref = 'Low Education')/param = ref;
MODEL WEA_MRTL_CURRENT_NEW = SEX_ASK_TRM Age_group_5 Education
WGHTS_PROV_TRM /link = glogit;
DOMAIN startlanguage;
STRATA GEOSTRAT_TRM;
WEIGHT WGHTS_ANALYTIC_TRM;
ODS output ParameterEstimates = EST;
RUN;
PROC SORT data = EST Out = MyParmEst ;
BY Response;
WHERE startlanguage = "en";
RUN;
PROC PRINT data = MyParmEst; RUN;
SPSS
Analyze Complex Samples Logistc Regression…
in the “Plan” panel, select the file “”
click “Continue”
select the corresponding variables to the “Dependent Variable”, “Factor” and “Covariate” panels
click “Reference Category” and select “Lowest value”
select “” to the “Subpopulations” panel and enter the target category
click “Statistics…” select “Estimate” and “Standard error” click “Continue” click “OK”.
Stata
svy linearized, subpop(if startlanguage == "en"): mlogit WEA_MRTL_CURRENT_New
i.SEX_ASK_TRM i.Age_group_5 ib3.Education i.WGHTS_PROV_TRM, baseoutcome(1)
Population Est. | Est. | SE | Est. | SE | Est. | SE |
---|---|---|---|---|---|---|
2:Married | ||||||
(Intercept) | 1.9466 | 1.1853 | 1.9466 | 1.1591 | 1.9466 | 1.1591 |
SEX_ASK_TRM=“M” | 0.3502 | 0.4382 | 0.3502 | 0.4285 | 0.3502 | 0.4284 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||
Age_Gpr1:Age 49-54 | -0.8421 | 0.9684 | -0.8421 | 0.9470 | -0.8421 | 0.9469 |
Age_Gpr2:Age 55-64 | -0.4370 | 0.9026 | -0.4370 | 0.8826 | -0.4370 | 0.8826 |
Age_Gpr3:Age 65-74 | -1.3042 | 0.9379 | -1.3042 | 0.9172 | -1.3042 | 0.9171 |
Age_Gpr4:Age 75+ | -0.0157 | 1.0214 | -0.0157 | 0.9987 | -0.0157 | 0.9987 |
Education Levels: relative to Lower Education | ||||||
Medium Education | 0.3665 | 0.6343 | 0.3665 | 0.6202 | 0.3665 | 0.6202 |
Higher Education lower | 0.0851 | 0.6725 | 0.0851 | 0.6576 | 0.0851 | 0.6576 |
Higher Education upper | 0.5684 | 0.6446 | 0.5684 | 0.6303 | 0.5684 | 0.6303 |
Provinces: relative to Alberta | ||||||
British Columbia | -0.4055 | 0.8759 | -0.4055 | 0.8565 | -0.4055 | 0.8565 |
Manitoba | -0.6105 | 0.9204 | -0.6105 | 0.9000 | -0.6106 | 0.9000 |
New Brunswick | -0.4589 | 1.0576 | -0.4589 | 1.0342 | -0.4592 | 1.0341 |
Newfoundland & Labrador | 0.6142 | 1.0791 | 0.6142 | 1.0552 | 0.6142 | 1.0552 |
Nova Scotia | 0.0791 | 1.0709 | 0.0791 | 1.0472 | 0.0790 | 1.0472 |
Ontario | 0.2354 | 0.8047 | 0.2354 | 0.7869 | 0.2354 | 0.7869 |
Prince Edward Island | 12.8690 | 0.8114 | 19.8690 | 0.0000 | 13.8779 | 0.7935 |
Quebec | -0.5356 | 0.8771 | -0.5356 | 0.8577 | -0.5357 | 0.8577 |
Saskatchewan | 1.5866 | 1.1386 | 1.5866 | 1.1134 | 1.5879 | 1.1140 |
3:Other | ||||||
(Intercept) | 1.6253 | 1.6272 | 1.6253 | 1.5912 | 1.6255 | 1.5911 |
SEX_ASK_TRM=“M” | -0.6157 | 0.5394 | -0.6157 | 0.5275 | -0.6157 | 0.5274 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||
Age_Gpr1:Age 49-54 | -1.4500 | 1.3597 | -1.4500 | 1.3296 | -1.4501 | 1.3295 |
Age_Gpr2:Age 55-64 | -0.6046 | 1.2955 | -0.6046 | 1.2668 | -0.6046 | 1.2667 |
Age_Gpr3:Age 65-74 | -0.3936 | 1.2713 | -0.3936 | 1.2432 | -0.3935 | 1.2431 |
Age_Gpr4:Age 75+ | -0.3864 | 1.3586 | -0.3864 | 1.3285 | -0.3864 | 1.3284 |
Education Levels: relative to Lower Education | ||||||
Medium Education | 0.7692 | 0.8135 | 0.7692 | 0.7955 | 0.7692 | 0.7955 |
Higher Education lower | 0.4620 | 0.8535 | 0.4620 | 0.8346 | 0.4620 | 0.8346 |
Higher Education upper | 0.2891 | 0.8346 | 0.2891 | 0.8161 | 0.2891 | 0.8161 |
Provinces: relative to Alberta | ||||||
British Columbia | -0.8886 | 0.9615 | -0.8886 | 0.9402 | -0.8887 | 0.9402 |
Manitoba | -2.3652 | 1.1535 | -2.3652 | 1.1280 | -2.3657 | 1.1280 |
New Brunswick | -2.7147 | 1.3314 | -2.7147 | 1.3020 | -2.7162 | 1.3024 |
Newfoundland & Labrador | -0.5965 | 1.2711 | -0.5965 | 1.2429 | -0.5967 | 1.2428 |
Nova Scotia | -1.3207 | 1.2335 | -1.3207 | 1.2062 | -1.3208 | 1.2061 |
Ontario | -0.6761 | 0.8822 | -0.6761 | 0.8627 | -0.6762 | 0.8627 |
Prince Edward Island | 12.9517 | 0.8655 | 19.9517 | 6.9021 | 13.9607 | 0.8462 |
Quebec | -1.2976 | 0.9965 | -1.2976 | 0.9744 | -1.2978 | 0.9744 |
Saskatchewan | 1.2386 | 1.1998 | 1.2386 | 1.1733 | 1.2398 | 1.1738 |
Note:
Both and detect that there is a quasi-complete separation in the dataset while does not.This results in the slight differences in the estimates and the standard errors.