7.3 Linear regression in domain analysis
As mentioned in Chapter 6.2, there are only a few numerical variables in the CLSA Tracking cohort suitable for linear regression. We choose the self-reported height and weight variables to demonstrate the linear regression in domain analysis. Suppose that we want to investigate the relationship of self-reported height and weight within the subpopulation which are interviewed in English, we may apply the following codes.
R
LinearReg_EN<-svyglm(HWT_DHT_M_TRM~HWT_WGHT_KG_TRM+SEX_ASK_TRM+
Age_group_5 + Education + WGHTS_PROV_TRM,
family = "gaussian",
design = subset(CLSA.design.anly, startlanguage = "en"))
summary(LinearReg_EN)
SAS
PROC SURVEYREG data = CLSAData ;
CLASS SEX_ASK_TRM(ref = 'F') Age_group_5(ref = '45-48')
Education(ref = 'Low Education') WGHTS_PROV_TRM(ref = 'AB');
MODEL HWT_DHT_M_TRM = HWT_WGHT_KG_TRM SEX_ASK_TRM Age_group_5
Education WGHTS_PROV_TRM / solution ;
DOMAIN startlanguage;
STRATA GEOSTRAT_TRM ;
WEIGHT WGHTS_ANALYTIC_TRM;
ODS output ParameterEstimates = EST;
RUN;
PROC PRINT data = EST;
WHERE startlanguage ='en';
FORMAT _numeric_ 15.9; run;
SPSS
Analyze Complex Samples General Linear Model… Select the file “CLSADesignAnyl.csaplan” in the Plan panel select [Target Variables] to the “Dependent Variable”, “Factor” and “Covariate” panels select ” to the “Subpopulations” panel and enter the target category click “Statistics…” select “Estimate” and “Standard error” click “Continue” click “OK
Stata
svyset entity_id, strata(StraVar) weight(WGHTS_ANALYTIC_TRM) vce(linearized)
singleunit(certainty)
svy linearized, subpop(if startlanguage == "en"):
regress HWT_DHT_M_TRM HWT_WGHT_KG_TRM i.SEX_ASK_TRM i.Age_group_5
ib3.Education i.WGHTS_PROV_TRM
estimates table, b(%10.0g) se(%10.0g)
Population Estimates | Coeff. | SE | Coeff. | SE | Coeff. | SE | Coeff. | SE |
---|---|---|---|---|---|---|---|---|
(Intercept) | 1.5487 | 0.0218 | 1.5487 | 0.0221 | 1.5487 | 0.0218 | 1.5487 | 0.0218 |
HWT_WGHT_KG_TRM | 0.0008 | 0.0002 | 0.0008 | 0.0002 | 0.0008 | 0.0002 | 0.0008 | 0.0002 |
SEX_ASK_TRM=“M” | 0.0866 | 0.0076 | 0.0866 | 0.0077 | 0.0866 | 0.0076 | 0.0866 | 0.0076 |
Age Groups: relative to Age_Gpr0: Age 45-48 | ||||||||
Age_Gpr1:Age 49-54 | 0.0077 | 0.0131 | 0.0077 | 0.0133 | 0.0077 | 0.0131 | 0.0077 | 0.0131 |
Age_Gpr2:Age 55-64 | 0.0185 | 0.0123 | 0.0185 | 0.0125 | 0.0185 | 0.0123 | 0.0185 | 0.0123 |
Age_Gpr3:Age 65-74 | 0.0053 | 0.0134 | 0.0053 | 0.0136 | 0.0053 | 0.0134 | 0.0053 | 0.0134 |
Age_Gpr4:Age 75+ | 0.0069 | 0.0139 | 0.0069 | 0.0141 | 0.0069 | 0.0139 | 0.0069 | 0.0139 |
Education Levels: relative to Lower Education | ||||||||
Medium Education | 0.0203 | 0.0091 | 0.0203 | 0.0092 | 0.0203 | 0.0091 | 0.0203 | 0.0091 |
Higher Education lower | 0.0232 | 0.0110 | 0.0232 | 0.0111 | 0.0232 | 0.0110 | 0.0232 | 0.0110 |
Higher Education upper | 0.0265 | 0.0091 | 0.0265 | 0.0093 | 0.0265 | 0.0091 | 0.0265 | 0.0091 |
Provinces: relative to Alberta | ||||||||
British Columbia | -0.0143 | 0.0124 | -0.0143 | 0.0125 | -0.0143 | 0.0124 | -0.0143 | 0.0124 |
Manitoba | 0.0263 | 0.0189 | 0.0263 | 0.0191 | 0.0263 | 0.0189 | 0.0263 | 0.0189 |
New Brunswick | 0.0048 | 0.0147 | 0.0048 | 0.0149 | 0.0048 | 0.0147 | 0.0048 | 0.0147 |
Newfoundland & Labrador | 0.0166 | 0.0120 | 0.0166 | 0.0122 | 0.0166 | 0.0120 | 0.0166 | 0.0120 |
Nova Scotia | -0.0311 | 0.0127 | -0.0311 | 0.0129 | -0.0311 | 0.0127 | -0.0311 | 0.0127 |
Ontario | -0.0075 | 0.0105 | -0.0075 | 0.0106 | -0.0075 | 0.0105 | -0.0075 | 0.0105 |
Prince Edward Island | -0.0132 | 0.0159 | -0.0132 | 0.0161 | -0.0132 | 0.0159 | -0.0132 | 0.0159 |
Quebec | -0.0134 | 0.0117 | -0.0134 | 0.0118 | -0.0134 | 0.0117 | -0.0134 | 0.0117 |
Saskatchewan | 0.0028 | 0.0157 | 0.0028 | 0.0159 | 0.0028 | 0.0157 | 0.0028 | 0.0157 |